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The advantages of using variational methods for solving the S&r&linger equation to 
obtain the binding energy, well depth, wavefunction, and the potential times the wave- 
function for the excited as well as the ground states of a potential are discussed. To 
illustrate the variational techniques the problem of a particle bound in a Woods-Saxon 
well is solved using a Harmonic Oscillator basis. Upper and lower bounds for both the 
eigenvalue and the overlap of the approximate eigenfunction with the true eigen- 
function are determined. 

1. INTRODUCTION 

For most potentials, the three-dimensional Schrbdinger equation can be reduced 
to a one-dimensional linear differential equation which must be solved numerically. 
Of the two most common methods of solution, variational methods and numerical 
integration, the variational methods are far superior. In the linear variational 
method the wavefunction is expanded in a convenient basis and the coefficients of 
the expansion determined by the solution of a set of linear equations. The approx- 
imate eigenfunction is thus found in a simple manner and its eigenvalue is deter- 
mined to a great precision. Furthermore, one of many sets of basis functions may 
be used for the expansion of the approximate eigenfunction; hence, the set most 
useful for further calculations may be chosen, The resulting wavefunction is 
determined in closed form and is represented by a small number of expansion 
coefficients. In addition, the accuracy of the results may be assessed using one of 
the many expressions for bounds on both the eigenvalues, and the overlap of the 
approximate eigenfunction with the true solution. Bounds may even be obtained 
on the matrix element of an arbitrary operator calculated with the approximate 
wavefunction. 

Numerical integration [l], while straightforward and easy to use, yields an 
approximate eigenfunction and eigenvalue whose accuracies are difficult to deter- 
mine. Also, the wavefunction is obtained in tabular form on the particular grid of 
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VARIATIONAL METHODS 267 

points appropriate to the numerical quadrature employed; thus the wavefunction 
is inconvenient to store and awkward to use in further calculations. 

For instance, in nuclear physics, approximate wavefunctions are often used as 
the input to the complicated calculations necessary to describe stripping and 
transfer reactions [2], and the structure of the nucleus [3]. In this paper we demon- 
strate the advantages of the variational method when used with the basis set 
typically chosen for nuclear calculations, i.e., the three-dimensional Harmonic 
Oscillator (HO) eigenfunctions. These functions not only have several additional 
properties which simplify subsequent calculations [4] but also enable the initial 
eigenfunction calculation to be done in an extremely efficient way. With this basis 
set the eigenvalues and approximate eigenfunctions of the Schrodinger equation 
can be found quickly and easily using the Rayleigh-Ritz (RR) variational principle. 
While this is well known for the ground state [3, 51, it is also true for the excited 
states [6]. The properties of the HO functions can be used to considerably simplify 
the calculations for the excited states. Since in many scattering calculations the 
potential times the wavefunction must be used as input, we show how the Schwinger 
variational principle, as modified by Schwartz [7], can be used to directly obtain 
this expansion in the HO basis. 

To demonstrate the use of these methods, we find the discrete solutions of the 
Schriidinger equation for a Woods-Saxon potential for the following cases: 
(1) Given the potential, find the binding energy and wavefunction for the k-th state; 
(2) Given the binding energy of the k-th state and the form of the potential, find 
the strength (i.e., coupling constant) of the potential which produces that state 
and find the wavefunction; and (3) Given the binding energy of the k-th state and 
the form of the potential, find the coupling constant and the expansion of the 
potential times the wavefunction. 

2. METHODS 

A. Binding Energy and Wavefmction 

In theory, the variational principle provides a method for the exact solution of 
the Schrbdinger equation; 

W’l = <@ I H I @p>/@ I 0) (2.1) 

is an extremum if and only if Cp is equal to an eigenfunction of the Hamiltonian H. 
In practice, one cannot consider all possible variations of 0; instead, one chooses 
a restricted set of trial functions and determines the functions Qk for which Ek is 
stationary for variations within the restricted basis. This is known as the variational 
method or variational approximation. 
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Here we use the method of linear variational parameters which is most commonly 
known as the Rayleigh-Ritz variational principle [8]. The trial function for the 
k-th level is written as 

t#Jj,=: aknP)n9 (2.2) 
n=l 

where the y,, is a set of linearly independent functions and the akn are parameters 
to be determined from the condition 

w@kI(H--E)I@k)=o (2.3) 

where the variation is with respect to the parameters. From (2.3) one obtains the 
linear equations 

jl(vm I(H-EE)I P)s)akn = Op m = 1, 2,.. ., N. (2.4) 

Therefore, given the matrix elements (p,,, 1 (H - E) 1 y,), this set of equations 
has nontrivial solutions only for those values of E for which 

det ICY,, I W - E> I dl = 0. (2.5) 

The N roots, b, , of this equation are upper bounds [6] to the N lowest eigenvalues 
of H. If one is interested in a particular eigenvalue and its corresponding eigenstate, 
Eq. (2.4) can be readily solved for that L$ and Qk by an iteration procedure [8]. 
In this method one uses (v1, I H I y)k) as an initial guess, &Lo’, to solve (2.4) for a 
first approximation, @jT’. This @ho’ is used to generate the next guess for 
8;” = (@pjc’i 1 H 1 @T’), and the process is iterated until the change in a?) is less 
than the desired accuracy. This process will work only if the k-th trial function plk , 
which is used to start the iteration, is similar to the final eigenstate, i.e., aLo) is 
closer to dk than to any other eigenvalue. The harmonic oscillator functions are 
well suited to this iteration procedure since the k-th HO state has the correct 
number of nodes to represent the true function. In practice a few iterations (less 
than six) are required for most cases. 

A good lower bound to the energy is derived in Appendix A. This bound is 
similar to that obtained by Stevenson and Crawford [9], i.e., 

Ek 3 01 - (x 1 (H - a)” 1 x)lj2 = ek (2.6) 

where (Y is a real number nearer to Ek than to any other eigenvalue, and x is an 
arbitrary function. Once the upper and lower bounds to the binding energy are 
known, bounds on the overlap integral 

Sk = (@k 1 yk>/[(@k 1 @k>cyk / yk>11’2 (2.7) 
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can be determined. The ?Pk are the true eigenfunctions and Gk are the approximate 
wavefunction. An easy bound to evaluate [lo] is found from 

,yk2 > ‘k+l - ‘k [I - @k - Ek)(bk-, - d 

(&k - gk-l)(Ek - %> 1 for k > I 
Ekil - Ek 

and 
S12 3 cc2 - &l)/(% - 9). (2.8) 

In practice one usually chooses for xk the variational wavefunction found from 
solving Eq. (2.4). 

B. Coupling Constant and Wavefunction 

The variational principle for the coupling constant (or well depth) can be 
developed in a manner analogous to that for the binding energy. One writes the 
Hamiltonian in the form: 

If = fb + V(r) (2.9) 

where V is the coupling constant which is to be determined and H,, is the kinetic 
energy plus any other potential whose strength is already known (e.g., the Coulomb 
potential). Thus, the problem is to find a value of V such that 

6% - E) u’, = vf@) yk (2.10) 

where pk has the appropriate boundary conditions. The variational form of 
Eq. (2.10) is 

WJY = <@ I wll - E) I @>I<@ If I @p>. (2.11) 

Using the Rayleigh-Ritz variational method and the trial function given in Eq. (2.2), 
one finds 

p?h ImJ - a - Wr)ll %> akn = 0, m = 192 ,..., N. (2.12) 

This set of linear equations has nontrivial solutions only for those values of V for 
which 

det KG I KfA - El - VW1 I v,)l = 0 (2.13) 

and it is a straightforward generalization of MacDonald’s proof for the energy [6] 
to show that for f(r) everywhere nonnegative, the N roots, (1, , of this equation 
are upper bounds to the N lowest eigenvalues of Eq. (2.10). Any potential can be 
expressed as a sum of two terms, one of which is nonnegative. This part is chosen 
to be Vf(r) and the remainder of the potential, which must have fixed depth, is 
included in H,, . If one is interested in a particular state, Eq. (2.12) can be solved 
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in an iterative method analogous to that described for the energy bounds. It is 
shown in Appendix A that 

Vk > cy - (x j (Ho - E - w.f)f-‘(HO - E - mf) / x)‘/~ = h, (2.14) 

where OL is a real number whose value is nearer to V, than to any other eigenvalue, 
and once again the function x is arbitrary. 

Given the upper and lower bounds on V, , bounds on the overlap integral 

Sk = <@k ISI Yk>l[@k If I @kXYk If I ~k>1”2 (2.15) 

can be determined. A good lower bound for the overlap is given by [l l] 

[I - Uk - Ak)(Ak-1 - 4) 
(Ak - Ak-lmk - Xl) I 

for k>l 

and 
Sl” 3 (X2 - 4)/@2 - 4). 

C. Coupling Constant andf Y 

(2.16) 

In nuclear transfer reaction calculations it is necessary to obtainfy rather than 
Y itself. In this type of calculation the problem is: given the form of the potential, 
Vf(r), the energy of the k-th excited state of angular momentum Z, find the value I’, 
which produces a bound state at this energy, and find an expansion for f Y in a 
convenient basis. Here we use an approach which directly yields an expansion off Y. 
This method has the following advantages: (1) it yields the expansion of fY 
directly in the desired set of functions; (2) it yields a highly accurate (variational) 
result for V, (3) the integrals involved may be done analytically (at least for the 
Woods-Saxon, Coulomb, Yukawa, Eckhart and other smooth analytic potentials). 
This method is the well-known Schwinger variational principle (SVP) which 
Schwartz [7] showed could be made into a useful tool for the calculation of binding 
energies and scattering amplitudes. 

The Schrodinger equation for a bound state may be written as 

Y = GoVfY (2.17) 

where G,, is the free particle Green’s function. Multiplying both sides of this 
equation by f, we have 

.f Y = fG,Vfy. (2.18) 

The stationary expression for V is obtained by taking the inner product of Eq. (2.18) 
with Y, i.e., 

W Ifl W = V<Y IfG,fI ‘y). (2.19) 
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Thus the stationary SVP expression for V is 

(2.20) 

Following Schwartz, we use f@ rather than @ itself as the function to be varied. 
With U = f@ the variational expression for V and U is 

WI = (U If-’ I U>/(U I G, I U>. (2.21) 

Here f-1 is the inverse of the radial potential f(r) which, we assume for conve- 
nience, does not equal zero for any finite value of r. The generalization to include 
the case where f(r) can equal zero is straightforward and has been discussed by 
Kaufman [12]. Since U = f@, the integrals in Eq. (2.21) are all convergent despite 
the (exponential) growth at large r of f-‘(r). 

It is now an easy matter to use Eq. (2.21) to obtain an upper bound for I’ and 
a good representation of,fY. In general we would pick a set of convenient trial 
functions to represent U, which should incorporate as many of the features of the 
correct wavefunction as possible. 

The trial function for the k-th level is written as 

N 

uk = c akn% 
W=l 

where the vn is a set of linearly independent functions and the akn parameters to be 
determined from the variational principle in Eq. (2.21). Forming a matrix represen- 
tation of Eq. (2.21) in the basis given in Eq. (2.21) and varying the parameters aKn 
yields 

il (% I(% - [VI-l)l y,> akn = 0, m = 1, 2 ,..., N. (2.23) 

These equations are solved by the methods described above for vk and fCDk , 

3. APPLICATIONS 

We demonstrate the use of the variational method to find eigenvalues and 
eigenvectors for the Schriidinger equation using for the basis states the three- 
dimensional Harmonic Oscillator functions. An expansion of the eigenfunction in 
this basis is particularly advantageous for many reasons. Most important, the 
transformation properties of the HO functions can considerably simplify further 
calculations. Furthermore, since the k-th HO function has the correct number of 
nodes, it is a good first approximation to the eigenfunction. Finally, many of the 
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matrix elements required for the evaluation of the upper and lower bounds can be 
done quite simply in this basis set. Even though these states have the wrong 
asymptotic behavior, we show that a small number of them can provide very 
accurate approximations to the true state. 

The specific problem we solve is a particle of mass 1 amu bound in a Woods- 
Saxon (WS) well of the form 

f(r) = (1 + expKr - %>14F1. 
The HO states are specified by the parameters b and n, where 

b = (h/Mco)1/2 

and the energy of the n-th state with orbital angular momentum I is 

(3.2) 

A. Upper Bounds 

E,, = (2n + 1 - l/2) ho. (3.3) 

To obtain the upper bounds for both the energy and coupling constants, it is 
necessary to evaluate the matrix elements of the kinetic energy and the potential. 
The matrix elements of the kinetic energy can be done analytically and are given 
in Appendix B. For the Woods-Saxon potential, 2N of the N2 required matrix 
elements off must be obtained by numerical integration, and the remainder are 
obtained using the recursion relations given in Appendix B. The matrix elements 
of G, and f-l are obtained analytically by the methods described in Appendix B. 

TABLE I 

Upper Bound to the Binding Energy of the Ground State (k = 1, 2 = 0) 
of a Woods-Saxon Well With a Depth V = 59.325619 MeV, Radius 

R, = 3.0 F, and a Diffuseness a = 0.65 F. N is the Number of 
HO States Used as a Basis Set and b is the HO Parameter 

N 
\ b 5 10 20 

0.5 19.245128 32.413744 35.809366 
1.0 35.925311 36.030516 36.031721 
1.5 36.031511 36.031723 36.031723 
2.0 36.025924 36.031682 36.031723 
2.5 36.005617 36.029762 36.031702 
3.0 35.602998 36.027841 36.031631 
3.5 34.395894 35.991046 36.029895 
4.0 32.425732 35.736178 36.028205 
4.5 29.953928 35.090119 36.023581 
5.0 27.247978 34.015972 35.969519 
5.5 24.513146 32.515619 35.787150 
6.0 21.885201 30.868528 35.412436 
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TABLE II 

Same as Table I for the Upper Bound to the Binding Energy of the First 
Excited State (k = 2, I = 0) 

N 
\ b 5 10 20 

1.00 -0.346314 
1.25 3.652250 
1.50 4.660154 
1.75 4.901074 
2.00 4.927064 
2.25 4.749687 
2.50 4.221878 
2.75 3.383561 
3.00 2.420734 
3.25 1.512757 
3.50 0.768114 

___~ 
4.259564 
4.865612 
4.974407 
4.994856 
4.997833 
4.996706 
4.997043 
4.977435 
4.865865 
4.586636 
4.119745 

4.945702 
4.994286 
4.999391 
4.999934 
4.999994 
4.999982 
4.999970 
4.999606 
4.998356 
4.997546 
4.996896 

TABLE III 

Coefficients a, and Bounds Calculated with b = 2F for the State Given in Table I 

N 
\ n 5 10 20 

1 
2 
3 
4 
5 - 

6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.963800 0.963811 
0.255490 0.255476 
0.074895 0.074698 
0.013932 0.012798 

-0.003350 -0.002678 
-0.005252 
-0.003969 
-0.002344 
-0.001109 
-0.000365 

0.963811 
0.255476 
0.074695 
0.012794 

-0.002682 
-0.005255 
-0.003967 
-0.002338 
-0.001095 
-0.000352 

0.000031 
0.000185 
0.000216 
0.000190 
0.000145 
0.000100 
0.000062 
o.oOOu35 
0.000017 
0.000005 

I 36.025924 36.031682 36.031723 
36.049959 36.032035 36.031725 
0.999595 0.999995 0.999999 
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In Tables I and II we give the upper bounds for the binding energy of the ground 
and first excited states evaluated with 5, 10, and 20 basis states for various values 
of the HO parameter b. The depth of the well was chosen by the methods in 
Section 2 to give the first excited state a binding energy of 5 MeV. 

In Tables III and IV we give the expansion coefficients akn , the upper and lower 
bounds to the binding energy, and the bound for the overlap, Sk . These values all 
were calculated with b = 2F. From these tables one can see that an accurate 
expansion of the ground or excited states can be obtained by the variational method. 

As an illustration of variational method of Eq. (2.11) to determine the upper 
bound to the coupling constant and the eigenfunction, we use a Woods-Saxon 
well of the form given in (2.1) to bind a particle with a mass of 1 amu by 5 MeV. 
The results for the upper bound to the magnitude of the depth are given in Tables V 
through VII for various values of b and for 5, 10, and 20 basis states. Only those 
values of b for which the iteration method converged are given in the tables. In 

TABLE IV 

Coefficient a,, and Bounds Calculated with b = 2 F for the State Given in Table II 

N 
\ R 5 10 20 

1 - 

2 
3 
4 
5 
6 
I 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-0.260434 -0.258409 
0.936548 0.932350 
0.120426 0.109958 
0.200011 0.221007 
0.023369 -0.006058 

0.049095 
-0.019166 

0.010087 
-0.009889 
-0.000139 

-0.258300 
0.932026 
0.109592 
0.221545 

-0.007014 
0.050485 

-0.021285 
0.012851 

-0.013934 
0.004991 

-0.007106 
0.003021 

-0.003324 
0.002056 

-0.001533 
0.001318 

-0.000710 
0.000737 

-0.000286 
0.000290 

& 4.927064 4.997833 4.999994 
B 0.922757 5.786371 0.995830 5.039774 0.999991 5.000081 



VARIATIONAL METHODS 275 

-\ . -A \ ---- ---- \ 
\ 
/ 

8 $ 52 E s - 

581/13/Z-8 



276 PAYNE AND SCHLESSINGER 

Fig. 1 and 2 we plot the coupling constant for a wider range of b, these values were 
obtained by solving for all the eigenvalues, i.e., all the zeros of the determinant of 
Eq. (2.13). From these results one can see that the range of b for which good bounds 
are obtained depends upon the state being considered. From Tables V through VII 
it is clear that accurate upper bounds to the coupling constant can be obtained 
for widely varying well parameters. 

In Tables VIII and IX we show two examples of the upper bound to the coupling 
constant calculated using the SVP of Eq. (2.21). These claculations were performed 
for the same binding energy and well as for the RR calculation of Tables V and VI. 
This comparison shows that fewer basis states are required in the SVP to obtain 
the same accuracy as the RR variational principle. In addition we list in Tables X 
and XI the coefficients for the expansion of V’Y calculated with b = 1.3F. 

B. Lower Bounds 

A lower bound to the binding energy is given by Eq. (2.6). While the function x 
in this expression is arbitrary, it must be judiciously chosen to obtain an adequate 

TABLE V 

Rayleigh-Ritz Upper Bound to the Coupling Constant for a Woods-Saxon Well with a Radius 
R, = 3F and Diffuseness a = 0.65 F Whose Ground State (k = 1, I = 0) Has a 
Binding Energy of 5 MeV. N is the Number of Basis States and b is the HO Parameter 

N 
\ b 5 10 20 

0.6 33.341145 22.975758 18.789944 
0.8 23.509460 19.073948 17.790319 
1.0 19.873585 17.999731 17.621356 
1.2 18.478912 17.701327 17.592929 
1.4 17.931997 17.618656 17.588158 
1.6 17.719732 17.595835 17.587359 
1.8 17.639958 17.589605 17.587225 
2.0 17.610479 17.587908 17.587202 
2.2 17.599522 17.587416 17.587199 
2.4 17.594990 17.587252 17.587198 
2.5 17.593452 17.587240 17.587199 
3.0 17.592342 17.588394 17.587213 
3.5 17.657287 17.589692 17.587250 
4.0 17.887074 17.591492 17.587890 
4.5 18.344404 17.617035 17.589144 
5.0 19.051678 17.705570 17.489513 
5.5 20.012000 17.891194 17.590883 
6.0 21.222966 18.194457 17.602356 
6.5 22.682479 E 8.624684 17.638048 
7.0 24.390595 19.184656 17.712399 
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TABLE VI 

Same as Table V for the First Excited State (k = 2, I = 0, E = 5 MeV) of the Well 

N 
\ b 5 10 20 

0.8 82.045040 64.988940 60.101963 
0.9 13.215983 62.319850 59.641288 
1.0 67.984255 60.907771 59.451613 
1.1 64.151923 60.160170 59.379716 
1.2 62.133251 59.165258 59.347113 
1.3 61.442991 59.556851 59.334686 
1.4 60.613225 59.446676 59.329326 
1.5 60.093111 59.388498 59.327134 
1.6 59.185146 59.358202 59.326239 
1.1 59.614850 59.342843 59.325814 
1.8 59.526356 59.335291 59.325723 
1.9 59.489104 59.331816 59.325659 
2.0 59.505205 59.331009 59.325635 
2.1 59.598460 59.331853 59.325435 
2.2 59.809283 59.333310 59.325654 
2.3 60.180928 59.333980 59.325672 
2.4 60.753300 59.333252 59.325676 
2.5 61.560240 59.332985 59.325693 
2.6 62.629459 59.338887 59.325828 
2.1 63.983689 59.360964 59.326242 

TABLE VII 

Rayleigh-Ritz Upper Bound to the Coupling Constant for a Woods-Saxon Well with a Radius 
R,, = 8 F and Diffuseness a = 0.65 F Whose Thirdf-state (k = 3, I = 3) has a Binding 

Energy of 5 MeV. N is the Number of Basis States and b the HO Parameter 

N 
\ b 5 10 20 

1.8 58.141078 56.294281 56.193952 
1.9 57.183830 56.245885 56.193355 
2.0 56.619946 56.223086 56.193122 
2.1 56.592214 56.206454 56.193056 
2.2 56.586934 56.196995 56.193041 
2.3 56.698622 56.198000 56.193031 
2.4 56.902485 56.200163 56.193029 
2.5 56.994163 56.200611 56.193083 
2.6 56.861967 56.208852 56.193090 
2.7 56.659549 56.223405 56.193180 
2.8 56.681164 56.229106 56.193424 
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TABLE VIII 

Schwinger Upper Bound to the Coupling Constant for a Woods-Saxon Well with a Radius 
R. = 3 F and Diffuseness a = 0.65 F Whose Ground State (k = 1, I = 0) has a Binding Energy 

of 5 MeV. N is the Number of Basis State and b the HO Parameter 

N 
\ 6 5 8 10 

.5 24.466072 20.165664 18.971937 
1.0 17.612024 17.588510 17.587442 
1.1 17.593442 17.587430 17.587234 
1.2 17.588265 17.587224 17.587204 
1.3 17.587402 17.587208 17.587197 
1.4 17.588421 17.587213 17.587204 
1.5 17.588643 17.587312 17.587207 
1.6 17.589115 17.587752 17.587243 
1.7 17.596243 17.588161 17.587504 
1.8 17.613867 17.588098 17.587922 
1.9 17.635322 17.589219 17.588032 
2.0 17.647371 17.595305 17.588197 
2.5 18.174913 17.638021 17.635042 
3.0 26.130532 18.939539 17.948930 

TABLE IX 

Same as Table VIII for the First Excited State (k = 2, 1 = 0, E = 5 MeV) 

N 
b \ 5 8 10 

1.0 59.626813 59.342356 59.328716 
1.1 59.419811 59.328798 59.326093 
1.2 59.348370 59.325893 59.325723 
1.3 59.332607 59.326612 59.325636 
1.4 59.396950 59.327623 59.326301 
1.5 59.460581 59.329285 59.327211 
1.6 59.441431 59.351679 59.327460 
1.7 59.567610 59.396577 59.338322 
1.8 60.398230 59.416683 59.371226 
1.9 62.635469 59.415163 59.402931 
2.0 67.045159 59.583807 59.403709 
2.5 165.69059 79.713136 66.363299 

lower bound. Obviously, the closer x is to the true eigenfunction, the better the 
lower bound. We calculated the lower bounds to the ground and first excited state 
energies of a particle with a mass of 1 amu bound in a Woods-Saxon well with a 
radius & = 31; and a diffuseness a = 0.65F. These bounds are given in Tables I 
and II. 
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TABLE X 

Coefficients uti for the Expansion of V’ for the State in Table VIII (b = 1.3 F) 

\ i N A = 17.58740 5 A = 17.58721 8 A = 17.58719 10 

1 11.42108 11.32587 11.30992 
2 -3.36691 -3.33989 -3.33523 
3 0.02629 0.02622 0.02628 
4 0.05273 0.06067 0.06091 
5 0.07966 0.09575 0.09566 
6 0.01295 0.01160 
7 0.00035 -0.00296 
8 -0.00339 -0.00772 
9 -0.00327 

10 -0.00113 

TABLE XI 

Coefficients a*, for the Expansion of Vfi for the State in Table IX (b = 1.3 F) 

\ i N A = 59.33261 5 A = 59.32661 8 A = 59.32563 10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

16.92442 16.55704 
27.10433 26.52106 

-2.01783 -1.98928 
-1.61808 -1.67331 
-0.75560 -0.85394 

-0.02676 
0.07163 
0.04306 

16.49640 
26.42356 

-1.98517 
-1.67336 
-0.84759 

0.00349 
0.13248 
0.11229 
0.04441 
0.01155 

The best bound found using Eq. (2.6) is obtained when 01 is as large as possible, 
subject to the restriction that 01 is closer to Ek than to any other eigenvalue. To 
maximize 01, the calculation of the lower bound is done in two steps. First, rough 
lower bounds to both Ek and Ekfl are calculated. Next a value of 01 chosen to be 
halfway between the two rough lower bounds is used to obtain a more accurate 
lower bound to Ek . This new lower bound is used to find an even larger value of OL 
halfway between the lower bounds. Then this new value of 01 is used to find a better 
bound to Ek . The process may be iterated until the bound no longer improves. 
This scheme is dependent upon obtaining the initial rough lower bounds to Ek 
and Ek+l . We obtained these bounds by using Eq. (2.6) with 01 equal to the upper 
bound to the eigenvalue. The rough lower bound calculated with this value of 01 is 
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valid only if bl, is closer to Ek than to any other eigenvalue. For the Woods-Saxon 
potential and the HO basis set this is not a difficult requirement to meet. However, 
the validity of this choice must be reexamined when a different potential or basis 
set is considered. For the energy bounds given in Tables I and II, x was chosen to be 
the variational wavefunction and no iterations in 01 were necessary. 

Once accurate lower bounds are available, bounds on matrix elements can be 
evaluated. As an example we calculate the lower bound to the overlap of the RR 
variational function with the true wavefunction. The results are given in Tables III 
and IV. 

Lower bounds for the coupling constant were calculated using Eq. (2.14) and 
an iteration method similar to that described for the energy bound. However, the 
matrix element in Eq. (2.14) is much more sensitive to the trial function x than the 
matrix element appearing in the energy bounds, and accurate bounds could not be 
obtained using only HO functions. Since we are primarily interested in knowing 
the lower bound to the overlap of the variational wavefunction with the true 
eigenfunction, the function x is used only to obtain a lower bound to the coupling 
constant, which is then used in Eq. (2.16). Consequently, x can be expanded in any 
convenient basis and the expansion coefficients chosen such that hK is maximized 
for a fixed value of 01. This is done by minimizing the matrix element 

44 = (x I Wo - E - d> f-Y& - E - 4 I x> 
using the RR variational method. It was found that accurate bounds could be 
obtained only if x had the correct asymptotic behavior. Thus, we chose for the 
basis set the HO functions plus the function 

y. = [I - exp(-r2/b2)]z+2 hl(l)(i~r), (3.4) 

where b is the HO parameter, K is the bound state wavenumber, and hi” is a Hankel 
function of the first kind [ 13 1. Using this procedure, lower bounds for the coupling 
constants V, and V, were calculated for the Woods-Saxon well with R. = 3F 
and a = 0.65F for a 1 amu particle bound by 5 MeV. (See Tables V and VI and 
Tables VIII and IX for the upper bounds to these coupling constants.) Using a basis 
set with 14 trial functions, we found after several iterations in (Y 

A, = 17.5614 MeV, 

A, = 59.2431 MeV. 
(3.5) 

To calculate the lower bound to the overlap, we need the lower bound to Vs 
which is found to be 

A, = 127.9503 MeV. (3.6) 
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Using these values we found 

S, >, 0.999691, 

s, > 0.999399, 
(3.7) 

where S, and S, are bounds for either 

mclfl ~?J/K@k Ifl @PkWkIfl ~k>11’2, 

using 20 trial functions and b = 2.OF, or 

<u?c I ~Jc>/KUk I f-' I UkXY7c I f I ~7c>1”2, 

using 10 trial functions and b = 1.3F. 
From this it can be seen that an accurate expansion off Y requires fewer terms 

than an expansion of Y to the same accuracy. One reason for this is that the function 
f Y is more localized in coordinate space than Y and consequently the expansion 
in HO states converges more rapidly. Both methods give very accurate expansions 
using relatively few terms. 

Thus we have shown that variational techniques can be used to obtain accurate 
approximate solutions to the Schrbdinger equation in a basis which is convenient 
for further calculations. 

APPENDIX A 

We derive the expression, Eq. (2.14), for the lower bound to the coupling 
constant. Consider the positive definite matrix element 

I(4 = <x I (4, - E - &f-W, - E - 4) I x> 

where (Y is a real number and x is arbitrary. 
We use the solutions Yy, of 

(A.1) 

as a basis set to write 

f-‘(Z&, - E - af) x = c cl!Pz 
1 

where cr is found from the orthogonality of the Yl , i.e., by using 

<~7sIfl~d=~,,. (A.3) 
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Using (A.3) and (A.2) one finds 

cz = @‘z I (4, - E - 4 I x> = V’z - 4Pz If I x>. 64.4) 

Therefore, Eq. (A.l) can be written in the form 

I(4 = c cz<x IWO - E - 41 ‘u,> 

if cy is closer to V, than to any other eigenvalue. 
Expanding x in the basis set Yz , one obtains 

where 

x = C aX 
1 

Thus 

a2 = C‘u If I x>. 

(x lfl x> = C adx Ifl yty,> 

(A.5) 

w-3 

64.7) 

(A.8) 

Therefore, Eq. (A.5) can be written in the form 

44 3 (Vk - aJ2(x IS I x>. (A-9) 

If the function x is normalized such that 

(x lfl x> = 1, 
it follows that 

(A.10) 

(x 1 (H,, - E - af)f-‘(I& - E - af) ) x)li2 > a - Ve (A.1 1) 

where now 01 has the additional restriction that it is larger than V, . Hence we find 

Vk 2 a - <x I (Ho - E - af)f-‘(Ho - E - af) I x)lj2. (A.12) 
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The expression, Eq. (2.6), for the lower bound to the energy can be derived in 
an analogous manner. Starting with the positive definite matrix element 

J(4 = (x I w - 4” I x> = (x I w - 4H - 4 I xh (A.13) 

we use the completeness of the solutions of the equation 

Hy, = E,Y, (A.14) 

to write 

(A.15) 

if 01 is closer to Ek than to any other eigenvalue. Now using the completeness of 
the Y, once again, one finds 

(x I (H - 4’ I x> 2 G% - 4)“. (A.16) 

Using the additional restriction that 01 is larger than Ek , we find 

(x 1 (H - a)” 1 x)l12 > a! - Ek . (A.17) 

This can be rewritten in the form 

EI, 2 01 - (x I (H - a)” I xY2 = cg. (A.18) 

APPENDIX B 

Here we derive the recursion relations for the matrix elements in a harmonic 
oscillator (HO) basis of the Green’s function, the potential, and the inverse of the 
potential. Also, we give the expression for the matrix element of the kinetic energy. 

The HO functions we use can be written in the form 

where 

]lp (i)‘+l exp [- k (+)‘I L.z/ ($-) (B.l) 
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for n = 1, 2,..., where L:~!:‘~(r”/b”) is the generalized Laguerre polynomial of 
Ref. [13]. 

The matrix element of the free particle Green’s function can be written in the 
form 

Gi, = K jam dr Iorn dr’ z.&(r) rj,(i~r,) r’hp)(iKr,) umz(r’) 03.2) 

where r<(r,) is the lesser (greater) of r and r’, jl(i~r) and hjl)(i~r) are the spherical 
Bessel and Hankel functions, respectively. The bound state wave number, K, is 
given by 

K = (2M 1 E l/fi2)1/2. (B-3) 

Equation (B.2) can be rewritten in the form 

where 
Gtwrz = ~(H;rn + Kim) (B.4) 

This expression for Hk, can be integrated by parts using 

and 

(d/dr)[r-cz-l)jl-I(itcr)] = -iKr-‘z-l’jt(iKr), 03.6) 

(d/dr)[r-(z-l)hl~~(iKr)] = -jw-(z-l)h~l)(iKr), (B.7) 

r-z(d/dr)[rzu,z(r)] = [(n + I - l/2)‘/” u,z-l(r) + nl12um+Il+l(r)]/b. (~.8) 

One finds 

Hi, = -[((n + I - l/2)@ + I - l/2))“” H&l 

+ ((n + 1 - l/2) WZ)~‘~ HAz+, + (n(m + I - 1/2))“2 Hk& 

+ (nd1’2 H~&+ll/(~@2 

+ (zk-’ jam dr unz(r) rjz(iKr) rh~I(iKr) umz(r) 

+ (~~6)~~ Joa dr z&r) rjz-l(iKr) rh~,(iKr) 

x Km + I - VW2 u,,-,(r) + ~1/2~m+,z-I(r)l (B-9) 
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and 

H;, = -[((PI + 1 - l/2)@ + 1 - 1/2)l” H&i 

+ ((m + I - l/2) r~)l’~ HA;;, + (m(n + I- 1/2))1’2 H&&z 

+ (m#‘2 H~,-:,,+,l/(~b)~ 

- (iK)-’ f69 d r u&r) rjl-l(ifcr) rh~)(ifcr) k(r) 

- (~~b)-l Irn dr[(m + 1 - 1/2)112 z4,t-1(r) + m144~~ll-l] 
0 

x rjl-l(itcr) r&Ttl(ifcr) u&r). (B. 10) 

Equations (B.4), (B.9), and (B.lO) give 

G :, = -[(@I + I - 1/2)(m + I - l/2))“” G:; + (IWI$‘~ G:&n+l 

+ (n(m + I - l/2))“” GL$m. + ((II + I - l/2) rr~)l’~ G&jf+,]/(~b)~ - S,/K”. 

(B.11) 

Thus given Gi, for n, m = 1,2 ,..., N + 1, one can use (B-1 1) to Cnd GAnt for 
n, m = 1, 2 ,..., N. 

To obtain the recursion relation for Go,,,, , one writes 

Go,, = -(iK)-’ [lm 
0 

dr uno(r) sin(k) J m dr ’ e-Kr’z4,0(r ‘) 

f Jam dr umo(r) Sh(iKr) lpm dr’ i-K”u.o(r’)] 

and integrates by parts twice the integrations over uno . Then using 

(B.12) 

one finds 

d2u,o/dr2 = -[(2n - l/2) uno + (n(n + 1/2))lj2 u,+~ o 

+ ((n - WJ - VW2 G-1 01b2 (B.13) 

G0,+m = -{b2Ln + [(Kb)2 + (2n - 1/2)1 G&n 

+ ((n - l)(n - 1/2))1’2 G:-I,,J/(n(n + 1/2))1’2. (B.14) 

Thus, G& can be used to generate all @,, . Transforming to momentum space 
it is readily found that 

GO,, = -2b2{d2 - mcb eXp[(Kb)‘] erfc(Kb)}/&“. (B.15) 
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The nonvanishing matrix elements of Tk,, for the kinetic energy can be readily 
obtained by using Eq. (B.13). This gives 

T&n = (2n + I - l/2) &w/2, m = n; 

= (n(n + I + 1/2))1/2fiw/2, m=n+l. 
(B.16) 

A recursion relation for the matrix elements Ai, , of any function of the coordi- 
nates A, can be found by using 

%&z(r) = Kdo2 %z(r) + w + I+ ww2 %l+1z(r) 

+ ((n - l>(n + 2 - l/2)>“‘” u,-,l(r>l/(2n + 1 - l/2). (B.17) 
This yields 

Aiz+m = P(n - 4 Ai, - ((n - l)(n + I - 1/2))1’2 A:-,, 

+ ((m - I)(m + I - 1/2))1’2 A$,+, 

+ Mm + I+ 1/2))“2 &,,,+J(4n + I + 1/2))“2. (B.18) 

Since A:, = AL,, this recursion relation can be used to generate Aftm for 
n, m = 1, 2 )...) N if we have A:,,, for m = 1,2 ,..., 2N. 

For the matrix element of the potential these 2N matrix elements must be found 
by numerical integration. If the potential is a Woods-Saxon, the matrix elements 
of its inverse can be found by recursion relations. That is, for 

j-1 = 1 + &4,)/a (B.19) 

one finds 
(f-l)nm = a,, + emRo’*Vim (B.20) 

where 

Cm = <unz I P I u*z>. (B.21) 

To obtain Vlrn , write u,~ in the form 

%&z(r) = [ 
(2n + 21- 1) ! y-n+3 l/2 r z+’ 

bd/2(n - 1) ! IO 3- 

* exp [- 5 (+)el g (-2)~ (” i ‘)($)2k/(~k + 2I+ 1) !! (B.22) 

Then 
m-1 

J%z = Km, c c,,hcz 
k-0 

(B.23) 
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where 

Km [ 
(2m + 21 - 1) ! !(m - 1) ! l/Z 21+2 

2y21+ 1) ! ! I b&2 ’ (B.24) 

Ckm = (-2)k/[(2k + 21 + 1) !!k!(m - k - 1) !I, (B.25) 

hkl = lom dr [ap [ - k (+)“I exp (:) 1 (~)zll+k+ll = H(k + I + 1). (B.26) 

Integrating by parts one finds that for p > 2, 

H(p + 1) = ($ + V) H(p) - p(2p2- *) H(p - I). (B.27) 

Then using 

and 

H(0) = n1f2b exp[b2/4a2][1 + erf(b/2a)]/2 (B.28) 

(B.29) 

one can find the necessary h,l. 
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